## White Ibis: Wetland Specialist or Urban Opportunist?





#### Sonia M. Hernandez, DVM, DACZM, PhD Professor

#### Warnell School of Forestry and Natural Resources

& SCWDS at College of Vet Med



University of Georgia

shernz@uga.edu



## Urbanization and wildlife

Urban environments attract wildlife through **resource provisioning** (food, water, shelter, etc), whether intentional or accidental



# Some wildlife adapt very well, yet....

- Various aspects of the ecology of these animals is affected by these resources
  - Host range, movement patterns, density, behavior, inter- and intraspecific interactions ....all with consequences for health and pathogen dynamics



# The White Ibis System

- White Ibis (Eudocimus albus)
  - Large nesting colonies
  - Marshy wetlands and pools near the coast
  - Nomadic, largest breeding sites in N. America in FL
  - 20-50% decline statewide due to habitat loss/degradation
  - Great model for studying impact of resource provisioning























# Factors influencing ecology and health

Coming into **frequent** and **close** contact with species with which they would normally not contact Occurring at constant, high densities Consuming poor quality food/water



#### **Physiology and health**

- Body condition indices
- Stress
- Immune function
- Pathogen or parasite exposure/infection

#### Movement patterns and habitat use

• VHF and GPS transmitters

## Diet

- Stable isotopes
- Microbiome

#### **Behavior**

- Individual and flock
  observations
- Personality profiles

# Urban gradient

- Palm Beach Co
  - 15 sites
  - Biological sample
  - GPS transmitters









# Urban site captures



## Wildland site captures



# Influences on Diet—stable isotopes of RBCs



Murray et al, Philosophical Transactions of RS B; 2018

## Influences on Diet—stable isotopes

- Ibises that had isotopic signatures that indicated that they had assimilated more provisioned food were
  - captured at more urban sites, used more urban habitat
  - assimilated less δ15N, had smaller dietary isotopic ellipses





## Influences on Diet—stable isotopes

 Ibises that assimilated more provisioned food had lower masslength residuals, BUT also lower ectoparasite scores



# Salmonella spp as another indicator

- Salmonella prevalence related to landscape characteristics?
- Relationship between Salmonella from ibises and humans?
- Ibis disperse long distances to natural areas to breed; play role in dissemination of urban-associated salmonellae?



# Salmonella spp mean prevalence 26%

- Prevalence higher in juveniles, in summer
- Tested relationship between Salmonella prevalence and land cover type (2 km buffer) using generalized linear models with a binomial distribution



## Salmonella prevalence and land use

• Site fidelity, and Salmonella environmental persistence



# Salmonella serotypes and PFGE

- Significant serotype (n=24) and strain (43 PFGE types) diversity
  - Indicates that ibises are likely transiently infected
- 33% were serotypes in top 20 of human cases



# Salmonella PFGE and PulseNet

- 58% (n=43) PFGE patterns matched human cases
- 20% of those had spatial/temporal match with human isolates in FL
- Negative relationship
  between Emergent Wetland
  and the Salmonella isolates
  from ibises that matched
  human cases in the
  PulseNet data base



How does the gastrointestinal microbiome **composition** and **alpha diversity** change with urbanization?

# Are these shifts associated with **Salmonella** prevalence?



# Changes in **Composition** with Urban Land Cover and Diet

#### 96 samples from 15 capture sites





Urban sites had a different bacterial **composition**—that composition influenced diversity



# SO.....What does it all mean?

- Ibis, like most urban wildlife, face trade-offs for their ecology and health when taking advantage of resources in urban habitats
  - Acquire more Salmonella and other pathogens
  - Eat more anthropogenic food, have less diverse GI microbiome
  - Are more sedentary
  - Evidence of a lower stress response, suggesting they are adapting to stressors without chronic stress
- Ultimately, the best measure would be fitness ......





## Take Home Messages

Dressed for lunch: the white bits is a familiar sight

nies in palm trees noar walerways. Here they can prese with mair barrae warring more natively kine ar

- People will continue to actively/passively feed white ibises
  - Does that matter?
- Urban ibis is not the same as wildland
  - Does it matter?



### Thank You! This work is/was supported and funded by.....

Co-Pis Erin Lipp Richard Hall Sonia Altizer Jeff Heppinstall Kristen Navara

Technicians Henry Adams Catie Welch Taylor Ellison Ethan Cooper Various vet & undergraduate students

